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Abstract

Motivation: RNA-binding proteins (RBPs) take over 5–10% of the eukaryotic proteome and play key

roles in many biological processes, e.g. gene regulation. Experimental detection of RBP binding

sites is still time-intensive and high-costly. Instead, computational prediction of the RBP binding

sites using patterns learned from existing annotation knowledge is a fast approach. From the bio-

logical point of view, the local structure context derived from local sequences will be recognized by

specific RBPs. However, in computational modeling using deep learning, to our best knowledge,

only global representations of entire RNA sequences are employed. So far, the local sequence in-

formation is ignored in the deep model construction process.

Results: In this study, we present a computational method iDeepE to predict RNA–protein binding

sites from RNA sequences by combining global and local convolutional neural networks (CNNs).

For the global CNN, we pad the RNA sequences into the same length. For the local CNN, we split a

RNA sequence into multiple overlapping fixed-length subsequences, where each subsequence is a

signal channel of the whole sequence. Next, we train deep CNNs for multiple subsequences and

the padded sequences to learn high-level features, respectively. Finally, the outputs from local and

global CNNs are combined to improve the prediction. iDeepE demonstrates a better performance

over state-of-the-art methods on two large-scale datasets derived from CLIP-seq. We also find that

the local CNN runs 1.8 times faster than the global CNN with comparable performance when using

GPUs. Our results show that iDeepE has captured experimentally verified binding motifs.

Availability and implementation: https://github.com/xypan1232/iDeepE

Contact: xypan172436@gmail.com or hbshen@sjtu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA-binding proteins (RBPs) are highly involved in many biologic-

al processes, e.g. gene regulation (Gerstberger et al., 2014) and

mRNA localization (Dictenberg et al., 2008), and they take over 5–

10% of the eukaryotic proteome (Castello et al., 2012). Some muta-

tions of RBPs might cause diseases. For example, the mutations in

RBP FUS and TDP-43 can cause amyotrophic lateral sclerosis

(Mackenzie et al., 2010). Thus, decoding the overview of RBP bind-

ing sites can give deeper insights into many biological mechanisms

(Glisovic et al., 2008).

With the high-throughput technologies developing, e.g. CLIP-seq

(Anders et al., 2012; Ferre et al., 2016; Ray et al., 2013), a huge vol-

ume of experimentally verified RBP binding sites are generated.

However, they are time-consuming and high-costly. Fortunately,
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these experimental data can serve as training data for machine learn-

ing models to learn binding patterns of RBPs. Many computational

approaches have been proposed to predict RBP binding sites

(Corrado et al., 2016; Kazan et al., 2010; Maticzka et al., 2014;

Strazar et al., 2016). For example, RNAContext is designed to iden-

tify RBP-specific sequence and structural preferences (Kazan et al.,

2010). GraphProt encodes the sequence and structure of RNAs

using graph encoding, which are further fed into support vector

machines (SVMs) to classify bound sites from unbound sites

(Maticzka et al., 2014). RNAcommender applies a recommender

system to suggest binding targets for RBPs by propagating the pro-

tein domain composition and the predicted RNA secondary struc-

tures (Corrado et al., 2016). The iONMF integrates multiple sources

of data, e.g. sequences, structures, gene types and clip-cobinding,

using orthogonal matrix factorization (Strazar et al., 2016).

Recently, deep learning (Hinton and Salakhutdinov, 2006; LeCun

et al., 2015) based methods have attracted huge attention for predict-

ing protein-binding RNAs/DNAs (Alipanahi et al., 2015; Pan et al.,

2016; Pan and Shen, 2017; Zhang et al., 2016), especially convolu-

tional neural networks (CNNs) (Lecun et al., 1998) based methods.

These methods not only outperform other existing methods in terms

of prediction accuracy, but also can easily extract binding motifs dir-

ectly from the learned parameters of CNNs. For example, DeepBind

trains a CNN model to identify the binding preference of RNA- and

DNA-binding proteins (Alipanahi et al., 2015). DeepSea also trains a

CNN model to predict the chromatin effects of sequence alteration

from sequences (Zhou and Troyanskaya, 2015). Considering the com-

plementarity of multiple sources of data, e.g. sequence, structure and

genomic context, our previous iDeep model integrates deep belief

networks (DBNs) (Hinton and Salakhutdinov, 2006) and a CNN,

resulting in an improved performance (Pan and Shen, 2017). Different

from DeepBind, iDeepS takes structures into consideration for RBP

binding specificity (Pan et al., 2017), and it trains two individual

CNNs and a long short term memory network (LSTM) (Hochreiter

and Schmidhuber, 1997) for sequences and structures to capture bind-

ing sequence and structure motifs of RBPs. Since the CNN-based

methods require input sequences with the same length, to handle the

sequence with variable length, one solution is padding all sequences

according to the longest sequence in training set.

Although, several conventional machine learning-based meth-

ods, such as Global Score (Cirillo et al., 2017), omiXcore (Armaos

et al., 2017) and RPI-Bind (Luo et al., 2017), employ local features

of RNAs and proteins to predict RNA–protein interaction pairs, al-

most all previous deep learning based RBP-specific approaches em-

ploy only entire sequences, and the local sequences are not taken

into account so far during model training. However, the RNA tar-

gets of an RBP generally share common local sequences, and are

also mediated by structure context (Lange et al., 2012). Structural

effects are limited to local domain that has impact on regional RNA

recognition motifs (Liu et al., 2017). Local structures are derived

from local sequences, thus those local sequences play important

roles in RNA–protein interactions (Grover et al., 2011; Tafer et al.,

2008). To integrate the local sequence information, we first split

sequences to multiple overlapping fixed-length subsequences, each

subsequence is considered as a channel like RGB channels of images.

On the other hand, an entire RNA sequence contains an overview of

the buried information without breaking some crucial information

for RBP interactions.

In this study, we present a new computational method iDeepE for

predicting RBP binding sites and motifs. It trains a local multi-channel

CNN and a global CNN for multiple local subsequences and entire

sequences, respectively. Considering that the ensemble of CNNs are

known to be more robust and accurate than individual CNNs (Hinton

et al., 2015; Pan et al., 2011), we integrate the local and global CNNs

as the final model to improve the performance. iDeepE also supports

GPU acceleration. Furthermore, we designed different network archi-

tectures based on CNNs, e.g. CNNs, CNN-LSTM and Deep Residual

Net (ResNet) (He et al., 2016a,b), and compared them with other

state-of-the-methods for predicting RBP binding sites on RNAs. In

addition, through evaluating the extracted binding sequence motifs

from iDeepE against experimentally verified binding motifs, we dem-

onstrate that iDeepE can capture binding motifs.

2 Materials and methods

In this study, we present a deep learning-based approach, iDeepE

(Fig. 1, Supplementary Algorithm 1), to predict the RBP binding

sites by integrating a local multi-channel CNN and a global CNN.

We first collect two large-scale RBP binding sites datasets, which are

used to train and evaluate the iDeepE. Next, we give the technical

details about different deep neural networks, including CNN,

LSTM, ResNet and their combinations in details.

2.1 Datasets and data preprocessing
The iDeepE model is evaluated on two large-scale datasets derived

from CLIP-seq: RBP-24 and RBP-47.

RBP-24: Here, the training and testing datasets of RBP binding

sites are downloaded from the website of GraphProt (http://www.

bioinf.uni-freiburg.de/Software/GraphProt). This dataset is also

used by deepnet-rbp (Zhang et al., 2016). It covers 24 experiments

of 21 RBPs. For each experiment, the positive sites are subsequences

anchored at the peak center derived from CLIP-seq processed in

doRiNA (Anders et al., 2012), the negative sites are the regions with

no supportive evidence of being binding sites. A number of training

samples are listed in Supplementary Table S1. For independent test-

ing set, most RBPs have 500 positives and 500 negatives, which are

original GraphProt’s testing set.

RBP-47: We also collect the datasets from RNAcommender

(Corrado et al., 2016), which includes a total of 502 178 binding

sites for 67 RBPs from CLIP-seq, but with different number of bind-

ing sites for individual RBPs (Supplementary Table S2). We only

keep those RBPs with the number of positive UTR sequences greater

than 2000. It is because deep learning based methods cannot con-

verge on a too small training set. In the end, we obtain the remaining

Fig. 1. The flowchart of iDeepE, it trains one model per RBP. (A) It pads the

RNA sequences to the maximum length in training sequences, and they are

converted into one-hot matrix, which are fed into a global CNN. (B) It first

breaks each RNA sequence into multiple overlapping fixed-length subse-

quences, each subsequence is a channel like RGB channel in images. Next

these subsequences are encoded in one-hot matrix (The gray is 0 and other

colors are 1), which are further inputted into a local multi-channel CNN.

Finally, the predictions are combined to yield the final predictions by averag-

ing the output probabilities from the global CNN (A) and local CNN (B)
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47 RBPs for following experiments. To train a model for each RBP,

we also generate the same number of negative sequences by random-

ly selecting the UTRs not interacting with this RBP. Furthermore,

we also create an non-redundant RBP-47 dataset, in which RNA

sequences in testing set with sequence similarity greater than 80% to

any sequences in training set were excluded by using cd-hit-est in

CD-HIT tool (Huang et al., 2010). 80% is the minimum cutoff

value of cd-hit-est, for lower cutoff, we use cd-hit to reduce sequence

redundancy.

In summary, RBP-24 is a subsequence-level dataset, and RBP-47

is a UTR-level dataset. For these two datasets, the positive sets are

both derived from CLIP-seq, but the negative sets are generated in

different strategies. The negative set of each RBP in RBP-24 is pro-

duced by moving the positive binding sites to random regions in the

same gene. However, the negative set of each RBP in RBP-47 con-

sists of the UTRs not interacting with this RBP.

We use different strategies to construct negative sequences of

RBP24 and RBP47 due to the followings: (i) We want to align

and compare with the original methods of GraphProt and

RNAcommender, and the two methods construct negative sequences

using different ways. (ii) Negative sequences of RBP-24 are subse-

quences of other non-bound region from the same gene of positive

sequences, while the negative sequences of RBP-47 are UTRs from

different genes. As shown in iONMF (Strazar et al., 2016), region

types also have important discriminate ability for RBP binding sites.

Thus, we cannot simply use other regions (e.g. exon, intron, etc.) of

the same gene as negative sequences for RBP-47. We also use CD-

HIT to exclude those redundant sequences in testing set with se-

quence similarity over 80% to any sequences in training set.

2.2 Sequence encoding
The CNN model requires that the inputs have fixed lengths, whereas

different RNA sequences vary significantly on their lengths. To solve

this problem, we do the following preprocessing for the input RNA

sequences:

1. For the global CNN module, all the sequences are padded into

the maximum length according to the predefined longest se-

quence in the training set.

2. For the local CNN, we first break the RNA sequence of length

L into multiple subsequences with window size W, each

subsequence is considered as a channel. The number of subse-

quences with overlapped shift S in the whole sequence is there-

fore (L—W)/(W—S). Here we also calculated the maximum

number of channels C according to the maximum length in

training sequences. If the number of channels for one sequence is

smaller than C, then it is extended by channels derived from

sequences with all nucleotide Ns to the C.

After this preprocessing, the sequences are converted into

one-hot encoding matrix (Alipanahi et al., 2015; Quang and

Xie, 2016; Zhou and Troyanskaya, 2015). Given an RNA sequence

s ¼ ðs1; s2; . . . snÞ with n nucleotides and a motif detector with ker-

nel size m of convolve filters, the one-hot encoding matrix M for

this sequence is:

Mi;j ¼

0:25 if si�mþ1 ¼ N or i < m or i > n�m

1 if si�mþ1 in A;C;G;Uð Þ

0 otherwise

8>><>>: (1)

where i is the index of nucleotides, j is the index corresponding to A,

C, G, U in matrix. For the padded nucleotide at the start and end of

sequences, we assume 4 nucleotides are equally distributed. Thus,

we use [0.25, 0.25, 0.25, 0.25] for the padded nucleotide and ‘N’ in

the one-hot matrix.

2.3 Convolutional neural network, long short term

memory network and Residual Net
The Convolutional Neural Network (CNN) (Lecun et al., 1998)

consists of convolution, max-pool and fully connected layers. In this

study, CNN captures non-linear features. The convolution outputs

the pointwise product between input one-hot matrix and filters, fol-

lowed by a rectified linear ReLU that sparsifies the outputs of the

convolution and keep only positive matches. Finally, a max pooling

operation is applied to reduce the dimensionality by selecting the

maximum value over a window.

convF Mð Þ : xi;k ¼
Xm
j¼ 1

X4

l¼1

Miþj;lFk;j;l (2)

ReLU xð Þ ¼
0 if x < 0

x else

(
(3)

where M is the input one-hot matrix of sequence s, Fk;� is the coeffi-

cient of motif detector k, m is the kernel size and the outputs xi;k

from the convolution operation are the feature maps, i is index of

nucleotides in a sequence, l is the index corresponding to A, C, G, U

in matrix.

Long short term memory network (LSTM) (Hochreiter and

Schmidhuber, 1997) is a widely used recurrent neural networks, it is

capable of learning long-term dependencies to improve prediction

performance. A LSTM consists of a forget gate layer, an input gate

layer and an output layer. LSTM first decides which information

should be excluded by a forget gate layer according to previous

inputs. Then an input gate layer determines which information

should be kept for next layer, and update the current state value.

Finally, an output gate layer is used to decide what parts of state

value should be outputted.

Assume we have a sequence fxgT , and the LSTM has hidden

states fhgT , cell states fcgTand outputs fogT , we can format the

above steps as follows:

ft ¼ Sigmoid Wf xt þUf ht�1 þ bf

� �
it ¼ Sigmoid Wixt þUiht�1 þ bið Þ

ct ¼ ft � ct�1 þ it � tanh Wcxt þUcht�1 þ bcð Þ

ot ¼ Sigmoid Woxt þUoht�1 þ boð Þ

ht ¼ ot � tanh htð Þ

(4)

where � is element-wise multiplication, W�, U� and b� are the

parameters of the LSTM. And it, ft, ct, ot are the input, forget, cell

and output gates, respectively.

Bidirectional LSTM (BLSTM) is used to learn two directional de-

pendency, which sweeps from both left to right and right to left, and

the outputs of individual directions are concatenated. For CNN-

LSTM, the learned feature maps from CNNs are subsequently fed

into a bidirectional LSTM to learn long range dependencies between

those feature maps.

Residual Net (ResNet) (He et al., 2016a,b) is a kind of extremely

deep network, and it has become a benchmark network for image

classification. Thus, we also evaluate ResNet for predicting RBP

binding sites. In general, the deeper the neural network is, the better

the performance is (Szegedy et al., 2015). However, deeper network

easily suffers to the vanishing gradient problem that the gradient
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becomes slightly diminished as it passes through each layer of the

network. ResNet solves the vanishing gradient problem in an easy

way that provides the network with a shortcut at each layer, which

adds a learned residual to the input between this layer and subse-

quent layers. ResNet consists of many blocks, where each block

receives an input x from the previous block and computes an

output:

x ¼ xþ d xð Þ (5)

where dðxÞ is the output of the last layer in this block. Each block

has two sequences of batch normalization, weight layers and non-

linearity activation layers.

For the above three models, we learn the model parameters by

minimizing the binary cross-entropy loss as follows:

L wð Þ ¼ �
XN
i¼1

yilog byið Þ þ 1� yið Þ logð1� byi Þ þ akwk2 (6)

where yi is the true label f�1; 1g and byi is the output probability

of the last sigmoid layer in the fully connected layer.

2.4 Identifying the binding sequence motifs
We investigate convolution filters of the global CNN integrated in

iDeepE. The learned parameters of these convolve filters are con-

verted into position weight matrices (PWM) using the same strategy

in DeepBind and Basset (Alipanahi et al., 2015; Kelley et al., 2016).

For each sequence s in a set of sequences and filter fof width k,

k-mer sequence si�k
2
; si�k

2þ1; . . . ; siþk
2

is selected, if the activation of

filter f at position i is greater than 0.5 maximum activation of this fil-

ter across this set of sequences. Those selected k-mer sequences are

aligned using WebLogo (Crooks et al., 2004) to get sequence motifs.

To verify the detected sequence motifs, we align them against

experimentally discovered motifs from CISBP-RNA (Ray et al.,

2013) using the TOMTOM (Gupta et al., 2007) algorithm with

P-value<0.05. In addition, we also evaluate the motif enrichment

score using AME (Buske et al., 2010) in the MEME suite (Bailey

et al., 2009). It estimates the enrichment scores by scanning the pre-

dicted motifs against the input sequences and corresponding shuffled

sequences.

All the detected motifs for individual RBPs in RBP-24 dataset

are available at https://github.com/xypan1232/iDeepE/tree/master/

motif, which gives the learned filter heatmaps, WebLogo motifs, en-

richment scores and the outputs from TOMTOM. In addition, all

enrichment analysis of all motifs for individual RBPs are also given

at the same site. We also calculate the motif frequencies in binding

and non-binding sites using FIMO in MEME, respectively.

2.5 Models and baselines
Many computational methods have been developed for predicting

RBP binding sites from sequences alone. In this study, we evaluate

our method iDeepE and its eight variants against three state-of-

the-art methods, and the network architectures are shown in

Supplementary Material.

1. iDeepE-L: It uses two-layer local multi-channel CNNs (convo-

lution, ReLU and max pooling) to convolve the multiple subse-

quences of RNA sequences in parallel, then the feature maps

are further fed into two fully connected layers.

2. iDeepE-G: It uses two-layer global 1-channel CNNs for padded

RNA sequences, where all the sequences are padded into the

same length, then the feature maps from 1-channel CNN are

inputted into two fully connected layers. It uses the same tech-

nique as DeepBind.

3. iDeepE: It averages the output probabilities from iDeepE-L and

iDeepE-G as the final predictions.

4. CNN-LSTM-L: It is similar to iDeepE-L with an additional

two-layer bidirectional LSTM layer before the two fully con-

nected layers.

5. CNN-LSTM-G: It is similar to iDeepE-G with an additional

two-layer bidirectional LSTM layer before the two fully con-

nected layers.

6. CNN-LSTM-E: It is the ensembling of CNN-LSTM-L and

CNN-LSTM-G.

7. ResNet-L: It uses 21-layer local multi-channel CNNs, and in-

sert shortcut connections between each two CNNs, which turn

the network into its counterpart residual.

8. ResNet-G: It uses 21-layer global 1-channel CNNs, and insert

shortcut connections between each two CNNs, which turn the

network into its counterpart residual.

9. ResNet-E: It is the ensembling of ResNet-L and ResNet-G.

10. GraphProt (Maticzka et al., 2014): It represents the RNA

sequences and structures in a high dimensional graph features,

which are further fed into support vector machine to classify

bound sites from unbound sites.

11. deepnet-rbp (Zhang et al., 2016): It trains a deep belief net-

work to predict RBP binding sites using the k-mer frequency

features of sequences and structures.

12. Pse-SVM: we also developed another method using pseudo

components generated by Pse-In-One(Liu et al., 2015a,b) with

parameters ‘-lamda 2 –w 0.05’as input features, which are fed

into a support vector machine (SVM) to classify bound sites

from unbound sites. We use grid search to find the optimum

parameters of SVMs for each RBP. Both the SVM and grid

search are from scikit-learn (Pedregosa et al., 2011), and the

values to be searched for SVM parameter C is [1, 5, 10], and

gamma is [0.01, 0.1, 1].

In this study, considering the binding specificity of RBPs, we

train RBP-specific model, where each model is trained on RNA

sequences for each RBP. Thus we only choose sequence-based meth-

ods GraphProt, deepnet-rbp, Pse-SVM and DeepBind as our baseline

methods. Here, iDeep and iDeepS are excluded for comparison. It is

because of the following: (i) iDeep requires other sources of features,

like region type and clip-cobinding. In addition, iDeep currently can

only handle fixed-length sequences. (ii) iDeepS cannot handle long

RNA sequences well, it is because predicting RNA structures from

sequences is computationally intensive, especially for long RNA

sequences in RBP-47. In this study, we use one-hot encoding to rep-

resent RNA sequences, we also compare iDeepE with another

method Pse-SVM that uses k-tuple nucleotide composition.

There also exist some non-RBP-specific methods that train a

mixed model (Armaos et al., 2017; Cirillo et al., 2017; Kumar et al.,

2008) on RNA and protein sequences together without considering

the binding specificities of RBPs. To demonstrate that RBP-specific

model yield better performance, we also evaluate non-RBP-specific

omiXcore (Armaos et al., 2017) on testing set of RBP-24.

2.6 Experimental details
To create local subsequences for local CNNs from entire sequences,

we use grid search to select optimum parameters window size W

and shift size S with other hyper parameters of CNNs. We configure

the maximum length of sequences L¼501 and L¼2695 for RBP-24

and RBP-47, respectively. It is because the sequences in RBP-47 are
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much longer than RBP-24. The value L is chosen to ascertain that

over 90% of sequences in train set are shorter than L. For sequences

longer than L, they will be truncated to length L.

We implement the iDeepE using PyTorch 0.1.11 (http://pytorch.

org/), it supports strong GPU acceleration. We set the number of

epochs to 50, and the batch size to 100, and Adam is used to minim-

ize binary cross-entropy loss. The parameter number of filters is set

to 16 (Alipanahi et al., 2015). The length of verified motifs in

CISBP-RNA database is 7 (Ray et al., 2013), as suggested by

DeepBind that the parameter kernel size should be 1.5 times the

length of verified motifs, and hence the kernel size is 10. The initial

weights and bias use default setting in PyTorch. When converting

them to binding motifs, we only use the previous 7 bits to match the

verified motifs in CISBP-RNA database. In addition, we also employ

multiple techniques to prevent or reduce over-fitting, e.g. batch nor-

malization and dropout (Srivastava et al., 2014).

We run our experiments on a Ubuntu server with TITAN X GPU

with memory 12 GB. We use the area under the receiver operating

characteristic curve (AUC) to measure the performance of different

methods.

3 Results

In this section, we first compare iDeepE with its variants and other

state-of-the-art methods, then we investigate the difference between

local CNNs and global CNNs. Furthermore, we infer the binding

motifs from the parameters of CNNs, and evaluate the identified

motifs against experimentally verified motifs in CISBP-RNA.

Additionally, we also evaluate the iDeepE on RBP-47 dataset and

cross-dataset performance between RBP-24 and RBP-47.

3.1 Parameter optimization
To investigate the impact of parameters on the performance of

iDeepE, we use 90% of original training set from RBP-24 as training

set, and the remaining 10% as validation set. We apply grid search

to find the best parameters for iDeepE, including hyperparameters

of CNNs (dropout probability D with values [0.25, 0.5], learning

rate LR with values [0.001, 0.0001] and regularization

weight_decay WD with values [0.01, 0.001, 0.0001]), windows size

W with values [81, 101, 151] and overlapped shift size S with values

[20, 30, 50] for local CNNs. In total, we evaluate the performance

(mean AUCs across 24 RBPs are shown in Supplementary Table S3)

of iDeepE for 108 combinations of these 5 parameters. We yield the

best mean AUC 0.934 when D¼0.25, LR¼0.001, WD¼0.0001,

W¼151 and S¼30. Considering that the larger the window size W

is, the less the number of subsequences is, thus the more time-

consuming iDeepE is, we choose W¼101, which is also used in pre-

vious studies (Pan and Shen, 2017; Strazar et al., 2016). Thus, when

we fixed the W¼101, iDeepE yields the best mean AUC 0.931

when D¼0.25, LR¼0.001, WD¼0.0001 and S¼50. In addition,

we plot figures of performance change related to the five parameters

individually (Supplementary Fig. S1). In each figure, the x-axis cor-

responds to the same values of other 4 parameters. When measuring

their impact individually, we can see that smaller dropout D, larger

window size W and smaller WD can yield better performance, learn-

ing rate LR and shift size S have no obvious impact on performance.

Considering it is very time-intensive to optimize these parameters,

for RBP-47 dataset, we use S¼20 to make less overlap between

windows for long RNA sequences in RBP-47, LR¼0.0001, and the

same values for other 3 parameters.

3.2 The performance of iDeepE on RBP-24
As shown in Table 1, iDeepE yields the best average AUC of 0.931

across 24 experiments, which is better than 0.887 of GraphProt,

0.912 of CNN-LSTM-E, 0.919 of ResNet-E, 0.778 of Pse-SVM and

0.902 of deepnet-rbp. Of the 3 fully sequence-based predictors using

local or global CNNs, all 3 predictors perform better than sequence-

structure-profile based methods GraphProt and deepnet-rbp.

According to the experiments, ResNet-E yields worse performance

than iDeepE on RBPs (e.g. ALKBH5 and C17ORF85) and the po-

tential reason is that it is constructed with a small number of train-

ing sequences. We also found that the tested Pse-SVM performs

worse than other approaches. The potential reason is that the

parameters of Pse-In-One need be further tuned to generate better

pseudo component features instead of using default parameters. The

developed iDeepE model yields the best AUC on 17 experiments

among the 6 predictors, followed by deepnet-rbp with 6 experi-

ments. Compared to DBN-based deepnet-rbp, iDeepE can achieve

an obvious improvement for some proteins, e.g. ZC3H7B, which is

an increase by 13.9% from 0.796 of deepnet-rbp to 0.907 of

iDeepE. For the same protein ZC3H7B, iDeepE also performs better

than the AUC 0.820 of GraphProt, and iDeepE increase the AUC

0.765 of GraphProt for RBP Ago2 to 0.884, which is an increase by

15.5%. In addition, we also run iDeepE on non-redundant RBP-24

dataset, in which RNA sequences in testing set have sequence simi-

larity 80, 70 and 60% smaller than any sequences in training set, re-

spectively. iDeepE achieves average AUCs of 0.928, 0.920 and

0.918 (Supplementary Fig. S2), which are a little lower than the

AUC 0.931 on the original set.

It needs to be pointed out that iDeepE performs worse on RBPs

with a small training set, e.g. ALKBH5 with 2410 training samples

and C17ORF85 with 3709 training samples (Supplementary Table

S1). It is because CNN-based methods in general require more data

to yield a better model. iDeepE achieves better performance than its

base predictors iDeepE-G and iDeepE-L, indicating that the two pre-

dictors can complement with each other. The ensemble predictor of

local and global CNNs outperform other two ensemble predictors

CNN-LSTM-E and ResNet-E that have more complex network

architectures.

We also compare iDeepE with non-RBP-specific method

omiXcore with protein and RNA sequences as inputs. We use

omiXcore to estimate binding scores between each RBP sequence

and its testing RNA sequences in RBP-24. Then based on these

scores, we calculate the AUC for each RBP. Here, we evaluate

omiXcore on 17 RBPs, and omiXcore yields an average AUC 0.54

(Supplementary Fig. S3), which is worse than iDeepE. The results in-

dicate that RBP-specific model can yield better performance than

non-RBP-specific method. The reason is that different RBPs show

different binding specificities, which is ignored by the non-RBP-

specific method omiXcore.

3.3 Comparing local CNNs with global CNNs on RBP-24
As indicated in Figure 2A, different models’ performances vary on

different datasets, and no single predictor can beat others on all

datasets. The six predictors iDeepE-L, iDeepE-G (DeepBind), CNN-

LSTM-L, CNN-LSTM-G, ResNet-L and ResNet-G yield the average

AUCs of 0.909, 0.925, 0.898, 0.900, 0.902 and 0.916 across 24

experiments, respectively. The results show that for most RBPs,

ResNet performs similar to others, but ResNet performs worse than

others on RBPs with small number of training set (e.g. ALKBH5). It

might be because that more complex models require more training

data, although ResNet has been demonstrated that it is powerful in
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image recognition. The deeper the model is, the more number of

training samples it requires.

Furthermore, we also show the average training loss change for

24 experiments with the number of epochs (Fig. 2B). The results

show that the local CNNs converge to lower training loss than their

corresponding global ones, but their performance are worse. And

the training process converges after about 50 epochs. The CNN-

LSTM-L yields lower loss than iDeepE-L and ResNet-L, but it per-

forms worse on independent testing set (Fig. 2A). The results impli-

cate that CNN-LSTM-L suffers to over-fitting. Similarly, ResNet-G

has lower training loss, but yields lower performance than its peer

iDeepE-G. The results demonstrate that using too much deeper net-

works for RNA sequences cannot guarantee better models, which is

different from the huge success on images. From Figure 2B, we also

can see that iDeepE-L and CNN-LSTM-L almost have the same

training loss and converging to the same loss consistently. The local

CNN converges slower than the corresponding global CNN.

We also record the total time cost of individual models on our

training data (Table 2). The results indicate that the local multi-

channel CNN performs faster than the global CNN. iDeepE-L is

over 1.8 times faster than iDeepE-G, and CNN-LSTM-L is nearly

1.5 times faster than CNN-LSTM-G. We can obviously see that

ResNet runs much slower than other models, it is because ResNet

has over 5 times deeper than other models.

3.4 The identified binding motifs by iDeepE
One advantage of iDeepE is that it can automatically identify the

binding sequence motifs from the learned parameters of CNNs. We

use iDeepE to discover binding motifs for RBPs in RBP-24 dataset.

Against current CISBP-RNA, there are 3 matched motifs with sig-

nificant E-value cutoff 0.05 calculated using TOMTOM are showed

(Fig. 3). For ELAVL1 and its family proteins, their detected motifs

are consistent with known consensus U-rich motifs derived from

SELEX (Gao et al., 1994). HNRNPC also demonstrates similar pref-

erence to U-rich sites (Konig et al., 2010). For the remaining three

RBPs, TIA1 and TIAL1 show a preference for U-rich binding sites

Table 1. The performance of iDeepE and other baseline methods across 24 experiments on RBP-24 dataset

RBP iDeepE CNN-LSTM-E ResNet-E Pse-SVM GraphProt Deepnet-rbp

ALKBH5 0.758 0.653 0.656 0.648 0.680 0.714

C17ORF85 0.830 0.822 0.756 0.734 0.800 0.820

C22ORF28 0.837 0.801 0.829 0.764 0.751 0.792

CAPRIN1 0.893 0.871 0.891 0.728 0.855 0.834

Ago2 0.884 0.851 0.854 0.746 0.765 0.809

ELAVL1H 0.979 0.975 0.975 0.816 0.955 0.966

SFRS1 0.946 0.929 0.945 0.746 0.898 0.931

HNRNPC 0.976 0.973 0.975 0.824 0.952 0.962

TDP43 0.945 0.928 0.937 0.840 0.874 0.876

TIA1 0.937 0.911 0.929 0.784 0.861 0.891

TIAL1 0.934 0.901 0.930 0.724 0.833 0.870

Ago1-4 0.915 0.873 0.911 0.728 0.895 0.881

ELAVL1B 0.971 0.963 0.970 0.837 0.935 0.961

ELAVL1A 0.964 0.962 0.961 0.830 0.959 0.966

EWSR1 0.969 0.965 0.967 0.753 0.935 0.966

FUS 0.985 0.980 0.977 0.762 0.968 0.980

ELAVL1C 0.988 0.986 0.988 0.853 0.991 0.994

IGF2BP1-3 0.947 0.940 0.952 0.753 0.889 0.879

MOV10 0.916 0.899 0.911 0.783 0.863 0.854

PUM2 0.967 0.963 0.965 0.840 0.954 0.971

QKI 0.970 0.966 0.969 0.809 0.957 0.983

TAF15 0.976 0.974 0.971 0.769 0.970 0.983

PTB 0.944 0.929 0.943 0.867 0.937 0.983

ZC3H7B 0.907 0.879 0.906 0.743 0.820 0.796

Mean 0.931 0.912 0.919 0.778 0.887 0.902

Note: The AUCs for GraphProt and deepnet-rbp are taken from original papers. The boldface indicates this AUC is the best among compared methods.

Fig. 2. Comparing local CNNs with global CNNs on RBP-24 dataset. (A) The

AUCs of local and global CNNs integrated in iDeepE, CNN-LSTM and ResNet

across 24 experiments in RBP-24. All the models are ran on the same training

and testing datasets. (B) The averaging training loss across 24 experiments in

RBBP-24 changes with the number of epochs for deep networks using local

and global CNNs

Table 2. The total time cost of different models for training the 24

experiments in RBP-24

Method Time (s)

iDeepE-L 3741.31

iDeepE-G 6963.1

CNN-LSTM-L 6129.64

CNN-LSTM-G 9783.3

ResNet-L 20 899.78

ResNet-G 29 302.88
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(Dember et al., 1996) with E-value 0.076 and 0.07, respectively. We

can find a known G-rich motif with E-value 0.07 for SFSR1 (Tacke

et al., 1997).

To show some meaningful motifs for those RBPS without veri-

fied motifs in current CISBP-RNA, we do the enrichment analysis

for the identified motifs using AME. We show some significant

motifs with support evidence from literature but absent in databases

(Fig. 4). Ago2 has a binding motif identified in (Li et al., 2014) with

adjusted P-value 2:22e�245, TDP-43 shows preference for GU-rich

sites with adjusted P-value 3.38e�195 and FUS prefers to AU-rich

sites with adjusted P-value 6.65e�29(Colombrita et al., 2012). The

motif of QKI closely resembles a motif reported by PAR-CLIP in

(Hafner et al., 2010) with adjusted P-value 5:66e�63. Furthermore,

as shown in Supplementary Figure S4, we can see PTB has a binding

motif of UC-rich sites with adjusted P-value 3:88e�3(Perez et al.,

1997). In addition, we identify some motifs of AU-rich sites with

adjusted P-value 9:28e�36, 3:92e�69 and 6:14e�6for PUM2, EWSR1

and TAF15 (Hoell et al., 2011), respectively. MOV10 has preference

to AC-rich sites with adjusted P-value 4:13e�15. We also discover

some novel motifs for Ago1-4, CAPRIN1 and ZC3H7B with

adjusted P-value 4:93e�292, 1:01e�146 and 1:96e�54, respectively.

3.5 The performance of iDeepE on UTR-level

dataset RBP-47
We further evaluate the iDeepE with local and global CNNs on a

more challenging dataset RBP-47, which has more number of

RBPs and UTR sequences as training samples. iDeepE, iDeepE-G,

iDeepE-L and Pse-SVM yield the average AUC 0.80, 0.78, 0.75 and

0.76 across 47 RBPs, respectively. The details are shown in

Supplementary Table S2. In addition, we evaluate iDeepE on strin-

gent non-redundant dataset RBP-47, iDeepE, iDeepE-G and

iDeepE-L yields the average AUCs 0.72, 0.70 and 0.69 across 47

RBPs, respectively (Supplementary Fig. S5). The performance is

lower than AUCs on original RBP-47. To investigate the impact of

sequence similarity on predictive performance, we further test

iDeepE on datasets with similarity cutoff 0.70, 0.60 and 0.50.

iDeepE yields average AUCs 0.71, 0.68 and 0.57, respectively. The

reason that iDeepE perform much worse on sequences with cutoff

0.50 is that too few samples are left. The corresponding results are

shown in Supplementary Table S4.

Of the 47 RBPs, 36 RBPs are evaluated by both

RNAcommender and iDeepE, the AUCs are shown in Figure 5A

(Supplementary Table S2). iDeepE, iDeep-G, iDeep-L,

RNAcommender and Pse-SVM achieves the average AUC of 0.81,

0.79, 0.76, 0.79 and 0.77 across the 36 RBPs, respectively.

The results demonstrate that fusing the local and global CNNs

yields better performance. Of the 36 RBPs, iDeepE yields the best

AUCs on 20 RBPs. For some RBPs, it achieves an improvement with

a large margin. Take RBP STAU1 as an example, iDeepE increases

the AUC 0.48 of RNAcommender to AUC 0.73 by 52%. However,

for some RBPs like IGF2BP1, iDeepE performs worse than

RNAcommender. In addition, the local CNN can perform better

than the global CNN for some RBPs (e.g. EWSR1, PUM2,

Supplementary Table S2). For example, the local CNN yields an

AUC 0.83 for EWSR1, which is higher than an AUC 0.81 of the glo-

bal CNN. It is worth pointing out that RNAcommender trains rec-

ommend system using Factorization Machines by automatically

treating full undetected interactions as negative samples. However,

iDeepE only randomly selects a subset of negative sequences. In add-

ition, compared to RNAcommender and Pse-SVM, iDeepE can iden-

tify verified binding motifs.

There are 12 RBPs shared between RBP-24 and RBP-47 dataset.

As indicated in Figure 5B, the performance of RBPs in RBP-47 is

worse than RBP-24. It is because of the followings: (i) The number

of training samples for each RBP in RBP-47 dataset is fewer than

RBP-24 (Supplementary Table S5). (ii) The negative samples in

RBP-47 are generated from those UTRs still not verified in current

AURA 2 database (August 5, 2015) (Dassi et al., 2014), which pos-

sibly exists some false negatives.

As shown in Supplementary Table S6, the negatives in RBP-47 is

very different from negatives in RBP-24, but for most RBPs, there is

big overlap between the positives in RBP-24 and RBP-47. In add-

ition, we checked the overlap between negative samples with bind-

ing sites derived from eCLIP data (Van Nostrand et al., 2016), of

the 12 shared RBPs, 5 have binding sites in eCLIP. We found that on

average 47.4% of negative samples in RBP-47 overlap with binding

sites derived from eCLIP data (Supplementary Table S7). The pos-

sible reason is that different experimental techniques may obtain

Fig. 3. The matched motifs against experimentally verified motifs in CISBP-

RNA, where the E-value is calculated by TOMTOM. In each figure (A–F), the

upper figure is the detected motif by iDeepE, the below figure is the experi-

mentally verified motifs from CISBP-RNA database

Fig. 4. The enriched binding motifs calculated by AME. The motif P-value are

calculated against shuffled sequences using AME
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inconsistent binding sites. However, RBP-24 generates the negative

samples by moving the positive binding sites to random regions in

the same gene, and it has much lower chance to be false negatives. It

is because that the same CLIP-seq experiments find some regions are

bound sites of a gene, and other regions of this gene are not bound

sites, which have more confidence to be true negatives. However,

randomly selecting negative UTRs may introduce some less-studied

UTRs, whose sequencing depth are not covered at the same time by

the same CLIP-seq analysis. To reduce false negatives, we may use

available iCLIP (http://icount.biolab.si) and eCLIP (https://www.

encodeproject.org/) (Van Nostrand et al., 2016)data collections to

remove overlapped negatives with the binding sites derived from

iCLIP and eCLIP.

3.6 Shuffling positive sequences as negative samples

yields overestimated performance
Furthermore, we evaluate the iDeepE on training set consisting of

positive sequences and shuffled positive sequences as negative sam-

ples. The results are shown in Supplementary Figure S6. iDeepE

yields an average AUC of 0.92 across the 47 RBPs in RBP-47, which

is possibly an overestimated performance. To prove it, we did cross-

dataset performance evaluation for iDeepE trained on two different

negative sets.

1. iDeepE-1: Train iDeepE using the positive and negative training

set of 12 shared RBPs from RBP-47.

2. iDeepE-2: Train iDeepE using the same positive training set

from RBP-47 but shuffled positive sequences as negative set for

the 12 RBPs, in which we shuffle each positive sequence as a

negative sample.

We evaluate the two trained iDeepE models using the same test-

ing set of 12 shared RBPs from RBP-24. The results are shown in

Figure 5C and D. The iDeepE-1 yields an average AUC 0.64 across

the 12 RBPs, which is much lower than the AUC on original training

set of RBP-24. The reason is that the negative sequences (moving

positive sites to random region within the same gene) in RBP-24

partly overlap with the positive UTR sequences in RBP-47.

However, iDeepE-2 achieves a much lower average AUC 0.49,

which is close to random guessing. Besides, we also evaluate

iDeepE-1 on non-redundant dataset, in which sequences in testing

set with sequence similarity greater than 80% to any sequences in

training set were excluded. iDeepE-1 yields the average AUC 0.62

(Supplementary Fig. S7). From the above results, we can conclude

that the quality of training data plays crucial roles in model training,

and the shuffled negative sequences lead to overestimated

performance.

4 Discussion

In this study, the local CNN runs faster than the global CNN with

comparable performance. We treat the multiple fixed subsequences

with the same contribution to the final feature maps of CNNs. In fu-

ture work, we can further improve it by combining multiple instance

learning (MIL) framework (Minhas and Ben-Hur, 2012) with a local

multi-channel CNN. It is commonly assumed that a RNA sequence

not bound by a RBP is treated as a negative sequence, there is no

any binding site of this RBP on this RNA. While a RNA sequence

that can be bound by a RBP is considered as a positive sequence, it

contains at least one binding site of this RBP. Therefore, it is fairly

intuitive to consider each RNA sequence as a bag, and any subse-

quence of this RNA as an instance. On the other hand, iDeepE uses

a simple averaging strategy to combine the local and global CNNs.

In previous studies, a novel stacked ensembling strategy has been

proved efficient in ncRNA–protein interaction prediction (Cao

et al., 2018; Pan et al., 2016), it can be further applied to improve

iDeepE’s performance.

We also demonstrate that shuffling positive sequences as nega-

tive samples will lead to overoptimistic performance when con-

structing training dataset. The reason is that shuffled sequences are

not real sequences that can be captured by CLIP-seq. However,

negative samples generated by moving the positive binding sites to

random regions in the same gene can construct more reliable nega-

tive samples. It is because that the same CLIP-seq experiments detect

subsequences within genes anchored at the read peak center as

bound sites, and the other subsequences within the same genes can-

not be detected. Those undetected subsequences by CLIP-seq have

much lower chance to be false negatives in the same experiment.

In iDeepE, we combine the global and local CNNs, instead of

different global CNNs. It is due to the followings: (i) The local CNN

performs 1.8 times faster than the global CNN with comparable

performance. (ii) As shown in a study (Pan et al., 2011), the more di-

versity the different base predictors are, the better performance the

ensemble predictor yields. However, when we use different hyper

parameters to run different global CNNs, the performance of those

global CNNs have minor difference and low diversity. (iii) Global

CNNs have larger memory consumption than local CNNs.

In this study, we train deep learning models on binding sites

derived from CLIP-seq, there also exists some conventional machine

learning models trained on RNA–protein complexes (Luo et al.,

2017; Pan et al., 2016). As shown in RPI-Bind (Luo et al., 2017), it

has total 9077 RNA binding sites for 170 proteins, and on average,

Fig. 5. The performance of iDeepE on RBP-47 dataset and cross-dataset per-

formance for 12 shared RBPs between RBP-47 and RBP-24 datasets. (A) The

AUCs of iDeepE and other state-of-the-art methods, where the AUCs of

RNAcommender directly are taken from the paper. (B) The performance of

iDeepE for the shared 12 RBPs from RBP-24 and RBP-47 datasets. (C) The

cross-dataset validation performance of iDeepE-1, iDeepE-1 is trained on

positive and negative sets from RBP-47, and evaluated on testing sets from

RBP-24. (D) The cross-dataset validation performance of iDeepE-2, iDeepE-2

is trained on positive set from RBP-47 but negative set are generated from

shuffling the corresponding positive sequences, and evaluated on the testing

sets from RBP-24
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each protein only has about 53 bound RNAs, which is too few for

training a deep networks and much lower than the number 2000

required in our study.

In iDeepE, we use padding to make the sequences have the same

length, and all training sequences are used to train a predictive

model. However, padding will introduce more computational mem-

ory, especially when the lengths of training sequences have a big

range. We can also use bucketing to resolve this issue. Bucketing

first groups training RNA sequences according to their length, thus

in each bucket, the length of sequence is similar, then we can pad

them to the same length for each bucket. However, each model

trained on a single bucket does not share parameters with any of the

models trained on other buckets. When testing for one sequence, we

first decide the sequence belong to which bucket according to its

length, then estimate binding score using the model trained on that

single bucket. One disadvantage is that the training sequences in

other buckets are totally ignored for this testing sequence, which is

much worse when we do not have a large training set.

There exist some possible applications for deep learning-based

iDeepE on drug discovery and identifying RNA recognition determi-

nants. Deep learning provides better generalization and predictive

accuracy given the focus on representation learning, it learns high-

level features from the simple raw representations instead of hand-

curated representations based on expert knowledge. However,

iDeepE requires a large training data and cannot model RBPs with

few targets. One possible solution is to train domain-specific models

instead of RBP-specific models, it is because RBPs that have identity

>70% in their binding domain sequences have similar binding se-

quence preference (Ray et al., 2013). Thus, we can expand iDeepE

to predict binding targets for those RBPs with similar binding

domains. Furthermore, we can construct the training RNA targets

from those RBPs with similar domains but few binding targets.

The iDeepE outperforms other state-of-the-art methods by com-

bining local and global sequence information using CNNs, which

automatically identify binding motifs for a further step to predict

RBP binding sites. Apart from detecting the experimentally verified

binding motifs, we also identify many novel motifs still not verified

in literatures. We expect these candidate motifs could facilitate a

quick guide for the wet-lab experiments to fast identify the binding

sites of RBPs. Similar to other deep learning based methods, iDeepE

is a black-box predictor, and we cannot trace the prediction back to

discriminate features. Currently, there exist some methods, like

DeepLift (Shrikumar et al., 2017), to investigate interpretability of

models, which is a hot research topic in deep learning and also fu-

ture direction for predicting RBP binding sites.

5 Conclusion

In this study, we present a deep learning based method iDeepE to

predict the RBP binding sites from sequences alone by fusing the

local multi-channel CNN and global CNN. In particular, we ob-

serve that: (i) iDeepE performs better than its eight variants and

other four state-of-the-art methods. (ii) The local CNN runs 1.8

times faster than the global CNN with comparable performance

using GPUs. When using CPUs, it saves more time, especially for

long sequences. In addition, local CNNs have lower memory re-

quirement. (iii) Shuffling positive sequences as negative samples

yields overoptimistic performance, it is better to construct negative

samples by moving the positive binding sites to random regions

within the same gene. (iv) Compared to other state-of-the-art

methods, iDeepE easily captures many experimentally verified bind-

ing motifs with high-confidence.
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